AWS underneath and Integration with React

il

? : i
O SOOI

||I="“4
aws %' e

This blog will go through how AWS is set up and what services were used to both
deploy the website on domain name and to accept contact messages from
viewers.

The AWS wiring that is under this project is for the functionality that will allow
views of my website to contact me.

This includes storing their message and their contact information in DynamoDB
and sending the same data to me via email. The AWS services for this
functionality include API Gateway, , AWS SNS, AWS SQS,
DynamoDB.

The API gateway has an HTTP post request method defined. This gateway has

proxy integration that will immediately relay the post request to a

import { SNSClient, PublishCommand } from "@aws-sdk/client-sns";
import { SQSClient, SendMessageCommand } from "@aws-sdk/client-sqgs”;

new SQSClient({ apiVersion: "2012-11-05" });
new SNSClient({ apiVersion: "2010-03-31" });

const sqs_client
const sns_client

export const handler = async (event) => {
const body = JSON.parse(event.body)
console.log(body, "my event")
const sqs_command = new SendMessageCommand({
MessageBody: JSON.stringify(body),
Queuelrl: "<sqgs-link>"

I

awalt sqs_client.send(sqs_command);

const sns_command = new PublishCommand({
Message: "Contact from Kalebtsegaye.com
Name: S${body.name}
E-mail: ${body.email}
Title: S{body.title}
Phone: ${body.phone ? body.phone : "N/A'}
Message: S${body.message}

¥
TopicArn: "<sns-topic-arn>"

I

awalt sns_client.send(sns_command);

const response = {
statusCode: 200,
headers: {
'"Content-Type': 'application/json',
'"Access-Control-Allow-Origin': '*'

T

body: JSON.stringify(Contact Successfull’),
};
return response;

i

This function pushes a message to a SQS queue and sends me an email with

the content of the form through an SNS topic.

The second Lambda will be triggered by an SQS event and will parse the

message data to save them to DynamoDB.

import {
DynamoDBClient,
PutItemCommand,

} from "@aws-sdk/client-dynamodb";

const dynamodb = new DynamoDBClient({
apiVersion: "2012-08-10"
1)

export const handler = async(event, context) => {
const body = JSON.parse(event.Records[0].body)
const saveParameters = {
TableName: 'kalebtsegaye-com',

Item: { _
"id": {EE!li
"name": {3},

"email": {2},
"title": {3},
"phone": {&},
"message": {2},
"created_at": {3}
}
};
const command = new PutItemCommand(saveParameters);
await dynamodb.send(command);
const response = {
statusCode: 200,
body: 'success'

};

return response;

Y;

The project structure is similar to the given requirement.

| have attached the list of items in DynamoDB and email | received during the

test of the project.

Items returned (9)

O id

] 40c3cb34-148f-5762-b697-9...
[l 374bf39d-618¢-5b9f-bagc-af ..
[l 74bdf72b-fc28-542b-92e6-a...
O b13a66f0-1cc1-57ee-b4g1-3...
O 84427be2-6f44-5fbe-ad33-2...
O 859507b0-e707-5023-b1d3-...
O bc868239-¢7c6-53d1-8290-...

O aafd063a-f351-5b28-88ea-5...
O 90c2b1dd-0cab-52f8-ac3a-e...

email

ruraryb@mailinator.com

myma@mailinator.com

nezegur@mailinator.com

gipygi@mailinator.com

mamuzujin@mailinater.com

Jance@gmail.com

tiwu@mailinator.com

hedazuzixe@mailinator.com

dezyfej@mailinator.com

created_at ¥

Tue, 23 May ...

Tue, 23 May ...

Wed, 24 May...

Tue, 23 May ...

Tue, 23 May ...

Tue, 23 May ...

Tue, 23 May ...

Wed, 24 May...

Tue, 23 May ...

message

v

Rerum quis...

Quisquam ...

Magna inci...

Temporibus. ..

Rerum debi...

Hello Kaleb...

Corporis iur...

Ut doloresr...

Eaque repel...

| &) | | Actions ¥ | | Create item ‘
1 @ X
name v ‘ phone v | title
Eaton Hewitt +1(594) 70... Earum cons
Lareina Dav... +1 (747) 65... Minima cor
Dorian Lott +1 (497) 40... Ut sed offic
Christen Me... +1(614) 41... Similique al
Uma Rose +1(715) 34... Id velit cons
Jance Fox 1122333444 Job related
Charde Mieves +1(658) 71... Et distinctic
Rhoda Leon... +1 (663) 49... Quasi dolor
Tara Henry +1 (734) 80... Quisquam y

v

Notify Kaleb Tsegaye <nc-reply@sns.amazonaws.coms

. tome -

Contact from Kalebtsegaye.com

ETT)

Mame: Charde Mieves

E-mail: tiwu@ mailinator.com
Title: Et distinctio Et om
Phone: +1 (658) 716-2564
Message: Corporis iure duis g

Notify Kaleb Tsegaye <nc-reply@sns.amazonaws.coms

. tome -

Contact from Kalebtsegaye.com

ETT)

Mame: Rhoda Leonard

E-mail: hedazuzixe@mailinator.com
Title: Quasi doloribus non

Phone: +1 (663) 494-3746
Message: Ut dolores rerum nis

Notify Kaleb Tsegaye <no-reply@sns.amazonaws.com=

. tome -

Contact from Kalebtsegaye.com

Mame: Dorian Lott

E-mail: nezegur@mailinator.com
Title: Ut sed officiis cons

Phone: +1 (497) 403-1748
Message: Magna incidunt sit

Route53 and CloudFront

While the React side was under development, | purchased a domain name from

a service called IONOS. The domain | purchased is https://kalebtsegaye.com

An S3 bucket contains the production build files of react to serve them through

Static website hosting.

| initially created a hosted zone on Route53 and pasted the NS record values to the
IONOS console of my domain name. That enabled me to control the deployment

to my domain from AWS. So, at this point, going to https://kalebtsegaye.com

serves the react application directly from my S3 bucket.

The next step was requesting a certificate from Amazon Certificate Manager and
creating Route53 CNAME records.
Next | created CloudFront distributions that will be invalidated everytime a new

version is pushed to the remote repository.

Here is the response header in https://kalebtsegaye.com on the web contents.

It shows that the site’s Server is AmazonS3 but it is being served from

CloudFront.

https://www.ionos.com/
https://kalebtsegaye.com
https://docs.aws.amazon.com/console/s3/hostingstaticwebsite
https://kalebtsegaye.com
https://kalebtsegaye.com

¥ Response Headers

Age:
Date:
Etag:

Server:

Via:

¥-Amz-CF-d:

X-Amz-CF-Pop:
X-Cache:

14101

Wed, 24 May 2023 04:23:39 GMT
"9a2d921c28dd7bcef9a2aefbf489d
6F6"

Amazons3

1.1
545e523089dd0806c0ea03a8c1e73
d52.cloudfront.net]
FSDFhl39pEUPZb0OFeGWTNT45d23r
AwoB5IATELWNZ2Be-Answ1AFVQ==
ORD52-C2

Hit from cloudfront

